

Automated Support for Classifying Software Failure Reports

Andy Podgurski, David Leon, Patrick Francis,
Wes Masri, Melinda Minch

Electrical Engineering & Computer Science Dept.
Case Western Reserve University

Cleveland, OH 44106
1-216-368-6884

andy@eecs.cwru.edu, dzl@po.cwru.edu,
paf9@po.cwru.edu, qds1@hotmail.com

mlm24@po.cwru.edu

Jiayang Sun, Bin Wang
Statistics Department

Case Western Reserve University
Cleveland, OH 44106

1-216-368-0630
jiayang@sun.cwru.edu, bwang@laplace.cwru.edu

Abstract

This paper proposes automated support for classifying
reported software failures in order to facilitate
prioritizing them and diagnosing their causes. A
classification strategy is presented that involves the use of
supervised and unsupervised pattern classification and
multivariate visualization. These techniques are applied
to profiles of failed executions in order to group together
failures with the same or similar causes. The resulting
classification is then used to assess the frequency and
severity of failures caused by particular defects and to
help diagnose those defects. The results of applying the
proposed classification strategy to failures of three large
subject programs are reported. These results indicate
that the strategy can be effective.

1. Introduction

Some recent software products such as Netscape
Communicator and Mozilla and Microsoft Visual
Studio.NET have the ability to detect certain of their own
runtime failures and, with the user’s permission, report
these to the software’s developer via the Internet. A
transmitted failure report includes information
characterizing the state of the software at the time the
failure was detected, which is intended to assist
developers in diagnosing the failure’s cause. Some
applications, including the Visual Studio.NET beta
version, have a feature that allows a user to transmit a
failure report (bug report) to the developer whenever they
believe the application has behaved incorrectly, that is,
even if the application did not detect a failure itself. The
report typically contains the user’s characterization of the
failure and may also contain information about the
application state. Such automated support for reporting
failures and collecting diagnostic information is a
significant advance in software development technology.

Traditionally, developers have relied upon users to report
software failures by email or telephone and to provide
detailed information about the conditions under which
they occurred so their cause could be diagnosed. Often,
however, users are unable to provide adequate
information even when they are questioned by support
personnel.

Although automated failure reporting and collection
of diagnostic information facilitates debugging, it is also
likely to exacerbate another problem encountered by
software developers: they often receive many more failure
reports than they have time to investigate thoroughly.
Developers attempt to classify and prioritize the failure
reports they receive, so they can address at least the most
significant ones. With automated problem reporting, the
number of failure reports received by developers seems
likely to increase dramatically. If so, manual
classification and prioritization of these reports may
become infeasible.

This paper proposes automated support for
classifying reported software failures so as to facilitate
prioritizing them and diagnosing their causes. A
classification strategy is presented that involves the use of
supervised and unsupervised pattern classification1 and
multivariate visualization. These techniques are applied
to execution profiles in order to group together reported
failures with closely related causes. Failures are initially
classified before their cause is investigated manually.
Limited manual investigation may then be done to confirm
or, if necessary, refine the initial classification. The
resulting classification is then used to assess the
operational frequency and severity of failures caused by
particular defects and to diagnose those defects. We report
the results of applying the proposed classification strategy
to failures of three large subject programs. These results
indicate that the strategy can be effective.

1 Supervised pattern classification techniques require a

training set with positive and negative instances of a
pattern; unsupervised techniques do not.

We now outline the remainder of the paper. Section
2 explains how classification of failures facilitates
maintenance. Section 3 outlines our strategy for
classifying failures. Sections 4-7 describe the phases of
the strategy in detail. Section 8 describes our
experimental results. Section 9 surveys related work.
Finally, conclusions and future work are presented in
Section 10.

2. How classification helps

(Note on terminology: We use the terms “software
failure” and “failure” as synonyms for “failed program
execution”.)

When software has many users it is common for
different users to report failures that are due to the same
defect, although this may not be obvious from the users’
descriptions of the failure. Thus, if users report m failures
over some period during which the software is executed n
times in total, it is likely that these failures are due to a
substantially smaller number k of distinct defects. Let F =
{f1, f2, ..., fm} be the set of reported failures. For
simplicity, assume that all reported failures are actual ones
and that each failure is caused by just one defect. Then F
can be partitioned into k < m subsets F1, F2, ..., Fk such
that all of the failures in Fi are caused by the same defect
di for 1 ≤ i ≤ k. We call this partition the true failure
classification. Knowledge about the true failure
classification is valuable to software developers for the
following reasons:
� k is the number of defects responsible for reported

failures.
� |Fi|/n is an estimate of the frequency with which

defect di causes failures in the field.
� The failures in Fi are the executions that are most

relevant to diagnosing the defect di. and to determining
its severity.

� To diagnose and repair di, it should usually suffice to
investigate at most a few of the failures in Fi in detail.

Although in principle developers can determine the
true failure classification exactly by manually diagnosing
the cause of each failure fi, 1 ≤ i ≤ m, this may be
impractical, and it largely defeats the purpose of
prioritizing reported failures. Instead, we propose using
automatic classification and multivariate visualization
techniques to approximate the true failure classification
with much less human effort. The approximation is
unlikely to be exact, because of estimation error and
because the techniques we employ are based on
correlations that may or may not indicate causation.
Nevertheless, we hypothesize that even a rough
approximation to the true failure classification can be of
great practical value to developers. Moreover, it is

possible to refine the initial classification as more
information is obtained.

Classifying program crashes and aborts is an
important special case of the failure classification problem
that is generally easier to solve than the general case,
provided that information about the program state just
before each crash or abort, such as a call-stack trace, is
available. For example, in postings on the Mozilla project
[20] the fact that multiple crashes occurred at the same
instruction and with the same call stack is used as
evidence that the crashes have the same cause.2 Note that
this paper addresses the more difficult general case of
failure classification, where a user may not realize that a
failure has occurred until well after the defective code that
caused it has executed.

3. Classification strategy

The basic strategy we present for approximating the
true failure classification has four phases:

1. The software is instrumented to collect and
transmit to the developer either execution
profiles or captured executions, and it is then
deployed. (Captured executions can be replayed
offline to obtain whatever kind of profile is
desired [24].)

2. Execution profiles corresponding to reported
failures are combined with a random sample of
profiles of operational executions for which no
failures were reported. This set of profiles is
then analyzed to select a subset of all profile
features3 (a projection) to use in grouping related
failures. The feature selection strategy is to:

a. Generate candidate feature-sets and use
each one to create and train a pattern
classifier to distinguish failures from
successful executions.

b. Select the features of the classifier that
performs best overall.

3. The profiles of reported failures are analyzed
using cluster analysis and/or multivariate
visualization techniques, in order to group
together failures whose profiles are similar with
respect to the features selected in phase (2).

2 James Larus of Microsoft Research informed one of the

authors (Podgurski) that Microsoft Corporation
internally uses automated heuristics to classify crash
reports produced by its products.

3 By a feature of an execution profile we mean an attribute
or element of it. For example, a function call profile
contains an execution count for each function in a
program, and each count is a feature of the profile.

4. The resulting classification of failures into
groups is explored in order to confirm it or, if
necessary, refine it.

The result of approximating the true failure
classification using this strategy is a partition C = {G1,
G2, ..., Gp} of F. We call C the approximate failure
classification. For it to be useful, all or most of the
groups Gi should contain all or mostly failures with
closely related causes.

Phases (1)–(4) of the classification strategy are
described in Sections 4–7, respectively.

4. Applicable forms of profiling

The kind of information that can be used in
automatically classifying arbitrary software failures is not
limited to the kind of information that is typically
considered in debugging, e.g., the value of the program
counter, the values of key variables, and the contents of
the call stack when a failure occurs. Any kind of
execution profile can be used that is potentially relevant to
the occurrence of failures and that can be collected from
the field without inconveniencing users unduly. This
includes both generic and application-specific profiles
characterizing such aspects of a program’s execution as its
control flow, data flow, input values and other variable
values, and event sequences. For example, profiles might
include execution counts for basic blocks, conditional
branches, functions, definition-use chains, or state
transitions. Profiles can be augmented with information
obtained from users when they reported failures, e.g., by
having them complete a form.

Both the causes of failures and their effects are
relevant to classifying them, and hence the form of
profiling should be chosen to reflect both if possible.
Since failures often involve small parts of a large
program, profiles should generally be as detailed (fine-
grained) as possible, considering profiling overhead and
analysis costs. Coarse-grained profiles are unlikely to
distinguish between different defects in the same fragment
of code.

5. Feature Selection

The second phase in our strategy for approximating
the true failure classification involves selecting a subset of
all profile features to use in grouping failures. This step is
necessary because execution profiles typically have
thousands of features, many of which are not relevant to
the occurrence of failures. For example, a profile might
contain an execution count for each basic block in a large
program. We hypothesize that the profile features that
are most relevant to classifying failures according to their
causes are the features that are most useful for

distinguishing reported failures from successful
executions.
 The approach to feature selection used in the experiments
reported in Section 8.1.2 is a modification of the
probabilistic wrapper method of Liu and Setiono [19].4
Random sets of features of given size are generated
iteratively. Each set of features and one part of the profile
data is used to train a classifier. The misclassification rate
of each classifier is estimated using another part of the
profile data, and the features used by the classifier with
the smallest estimated misclassification rate are chosen for
use in phase (3) of our classification strategy.

Many types of statistically-based classifiers have been
developed by researchers [6][9]. This paper does not
address the issue of which of these types of classifiers is
best suited to classifying program failures. Its goal is to
provide evidence that some classifiers are useful for this
purpose. Hence, in the experiments reported in Section 8,
we employ a widely-used but relatively simple type of
classifier: logistic regression models. Binary logistic
regression is a type of statistical regression in which the
dependent variable Y represents one of two possible
outcomes or responses, such as failure or success in the
case of a program execution [9]. In logistic regression,
the expected value E(Y | x) of Y given the vector of
predictor values x = (x1, x2, ..., xp) is π(x) = P(Y = 1 | x).
The conditional probability π(x) is modeled by

)(

)(

1
)(

x

x
x

g

g

e
e
+

=π

where the log odds ratio or logit g(x) defined by

pp xxg βββ
π

π +++=

−
= ...

1
ln)(110x

is a linear function of x. Each coefficient represents the
change in log odds of the response per unit change in the
corresponding predictor. When logistic regression is used
for classification, the coefficients of g(x) are estimated
from a sample of x and Y values to obtain an estimator

)(ˆ xg for g(x). The outcome for input x is classified as a 1
if an only if 0)(ˆ >xg , that is, if and only if the estimated
odds of a 1 exceed the estimated odds of a 0.

6. Grouping related failures

We consider two alternative approaches to grouping
related failures in phase (3) of our classification strategy.
The first approach calls for applying automatic cluster
analysis5 to the sub-profiles induced by the profile

4 In the wrapper approach to feature selection, candidate

feature sets are evaluated by using them to train
classifiers, whose misclassification rates are estimated.

5 Cluster analysis is an example of unsupervised learning.

features selected in phase (2). The second approach
involves applying a multivariate visualization technique
such as multidimensional scaling to the aforementioned
sub-profiles to produce a two-dimensional scatter plot
display representing the similarity or dissimilarity of the
sub-profiles to each other. This display is then inspected
and clusters are identified visually.6

6.1 Automatic cluster analysis

Ideally, the process of grouping failures according to
their likely causes would be fully automated. This
suggests applying automated cluster analysis [8] to the
sub-profiles induced by the profile features selected in
phase (2) of our classification strategy. Cluster analysis
algorithms identify clusters among a set of objects
according to the similarity or dissimilarity of their feature
vectors, as measured by a dissimilarity metric such as d-
dimensional Euclidean distance or Manhattan distance.
Roughly speaking, objects that are more similar to one
another than to other objects are placed in the same
cluster. In order to automatically group failures according
to their causes, it is necessary to estimate the number of
clusters among them. Although many approaches to
finding the “best” number of clusters in a population have
been proposed (see [8] for examples), the problem is quite
difficult, because there are often several “reasonable”
ways to cluster the same population. Hence, we have
concluded that it is unwise to depend solely on automatic
cluster analysis to group reported failures according to
their likely causes. We propose instead that cluster
analysis be used together with other techniques, such as
multivariate visualization.

One widely used measure of the goodness of a
clustering into c clusters, which we employ in Section 8, is
the index due to Calinski and Harabasz [3]:

)/(
)1/(

)(
cnW

cBcCH
−
−

=

where B is the total between-cluster sum of squared
distances, W is the total within-cluster sum of squared
distances from the cluster centroids, and n is the number
of objects in the population. To use CH(c), its value is
plotted for c = 2, 3, ... n, and local maxima are considered
as alternative estimates of the number of clusters.

6.2 Multivariate visualization

Multivariate visualization methods such as
multidimensional scaling (MDS) represent a set of objects

6 Note that if profiles of successful executions are

unavailable clustering can be done based on all profile
features, at the cost of some precision.

characterized by dissimilarity or similarity measurements
as points in a low dimensional space such as a two-
dimensional display [2]. A two-dimensional display
produced with MDS is a kind of scatter plot. The points
are positioned so that the distance between each pair of
points approximates the dissimilarity between the
corresponding objects. An arbitrary dissimilarity matrix
can be input to multidimensional scaling, so it can be used
with a variety of dissimilarity metrics.

We propose that multidimensional scaling be used to
display the sub-profiles induced by the profile features
selected in phase (2) of our classification strategy, so that
groups of related failures can be identified by visual
inspection of the resulting scatter plot. We hypothesize
that apparent clusters of points in the display will often
correspond to such groups of failures. With visualization,
users can judge themselves which failures are most closely
related, rather than relying on a fixed clustering criterion
as in automatic cluster analysis. A drawback of
visualization for this purpose is that in projecting high
dimensional data onto just two dimensions, small
dissimilarities may be poorly represented in the display.
Approaches to addressing this issue are presented in [17].
To better distinguish individual clusters, automatic cluster
analysis should be used together with visualization.
Clusters found automatically can be highlighted in an
MDS display, e.g., by coloring their points or drawing
their convex hulls.

We have developed a visualization tool that supports
MDS of large sets of execution profiles and provides
features useful for classifying failures, including ones for:
selecting a group of points in the display and determining
the corresponding executions; magnifying regions of the
display; and highlighting specified sets of points such as
clusters.

7. Confirming or refining the initial
classification

Given an initial approximation to the true failure
classification, a software developer might choose to use it
“as is” for the purpose of prioritizing reported failures.
However, it is prudent to do some additional work to
confirm or, if necessary, refine the initial classification.
This can be done by:

1. Selecting a few failures (two or more) from each
group of failures.

2. Attempting to determine if the failures selected
from a group actually have closely related
causes, using conventional debugging
techniques.

3. Attempting to determine if similar groups contain
failures with the same cause.

Step (2) is especially important with clusters that are
elongated or are “loose”, because such clusters have high
internal dissimilarity. If all of the failures selected from a
group turn out to have closely related causes, this is
further evidence that all or most of the failures in the
group do. Otherwise the initial classification should be
refined. Step (3) is applicable to neighboring clusters.

One criterion for deciding which failures to select
from a group is that ones with maximally dissimilar
profiles should be chosen. For example, one might select
one failure from each end of an elongated cluster. Such
failures can be selected automatically or by inspection of a
scatter plot display. If the selected failures have the same
or similar causes, one might conclude that all of the
failures between them in the cluster do also. If they have
dissimilar causes, one should seek a good place to split the
cluster into two or more pieces.

8. Experimental validation

In order to evaluate the effectiveness of our
classification strategy, we implemented its first three
phases with three large subject programs. Automatic
cluster analysis was used to classify failures, and the
resulting clusters were then examined manually. To be
thorough, we examined all or most of the failures in each
cluster rather than sampling just a few failures from each
cluster as described in Section 7.

8.1 Experimental methodology

8.1.1 Subject Programs, Inputs, and Profiles. The
three subject programs for this study were all compilers:
the GCC compiler for C [7] and the Jikes [15] and javac
[14] Java compilers. These programs were chosen for
several reasons: they are large; they can be executed
repeatedly with a script; source code for a number of
versions is available; and self-validating test suites are
available for them. Unfortunately, we did not have access
to failure reports from ordinary users. Instead, our
classification strategy was applied to the failures detected
by self-validating tests.

Version 2.95.2 (Debian GNU/Linux) of the GCC
compiler for C was used. Only the C compiler proper was
profiled. The compiler was executed on a subset of the
regression test suite for GCC, consisting of tests that
actually execute compiled code. These came from the test
suite shipped with GCC 3.0.2, which included tests for
defects still present in version 2.95.2. GCC was executed
on 3333 tests and failed 136 times. Version 1.15 of Jikes
and javac build 1.3.1_02-b02 were executed on the Jacks
test suite (as of 2/15/02) [11], which tests adherence to the
Java Language Specification [12]. Jikes was executed on
3149 tests and failed 225 times; javac was executed on

3140 tests and failed 233 times. Note that the Jacks test
suite contains tests that are specific to the Jikes and javac
compilers. GCC and Jikes, which are written in C and
C++ respectively, were profiled using the GNU test
coverage profiler Gcov, which is distributed with GCC.
To profile javac, which is written in Java, a simple
profiler was written by using the Java Virtual Machine
Profiling Interface [13]. For each test t of one of the
subject programs, the generated profile consisted of a
vector of counts, with one count per function in the
program. The count for each function f indicated how
many times f was executed during test t. Note that GCC
had 2214 functions, Jikes had 3644 functions, and javac
had 1554 functions.

8.1.2 Feature Selection. Phase (2) of our
classification strategy was implemented using the S-PLUS
6 statistical computing environment [23]. Logistic
regression (LR) models were used as classifiers. These
were implemented using the S-PLUS function glm. An S
language program was written to iteratively generate 400-
500 candidate models per data set and to fit and evaluate
them. Each model included 500 randomly selected
features.7 The S program output the best model of a
given type. To avoid underestimating the
misclassification rate of models, the original set of
profiles for each subject program was randomly
partitioned into three subsets (Train, TestA, and TestB)
comprising 50%, 25%, and 25% of the original set,
respectively. The profiles in Train were used to train
candidate models; those in TestA were used to pick the
best model (i.e., for model validation); those in TestB
were used to produce a final estimate of the best model’s
misclassification rate.

The measure used to pick the best model was the
average of the percentage of misclassified failures and the
percentage of misclassified successes. This measure gives
more weight to the misclassification of failures than does
the overall misclassification rate. For each of the data sets
(GCC, javac, and Jikes), the final logistic regression
model correctly classified at least 72% of failures and at
least 91% of successes. It is notable that S-PLUS
reported that a substantial number of selected features
were not used in the fitted logistic regression models,
because they were linearly dependent on other features.
We did not use those features for clustering or
visualization either.

7 The number of candidate models generated and the

number of features used were selected based on
preliminary experiments. They represent a tradeoff
between classifier performance and total training time.

8.1.3 Cluster Analysis. To group failures together
automatically, we used the S-PLUS cluster analysis
algorithm clara, which is based on the k-medoids
clustering criterion [16]. To estimate the number of
clusters in the data, the Calinski-Harabasz index CH(c)
was plotted for 2 ≤ c ≤ 50 and its local maxima were
examined.

8.1.4 Visualization. For each subject program, the
sub-profiles induced by the features of the best
classification model were displayed using the hierarchical
MDS (HMDS) algorithm described in [17]. This
algorithm was designed to minimize the error in
representing small dissimilarities between execution
profiles.

8.1.5 Manual Examination of Failures. In many
cases, we were able to diagnose the specific cause of a
group of failures. In other cases, this was not possible,
but other evidence was found that certain failures had the
same cause. The nature of such evidence varied with the
subject program. The GCC failures were manually
classified by exploiting the organization of the GCC test
suite and information about later versions of the compiler.
Each execution test in the GCC test suite involves
compiling a simple source file and executing the resulting
program. For each source file, multiple tests are run, each
with a different optimization level as some defects are
triggered only at certain optimization levels. Since each
source file is designed to reveal a specific defect, we
evaluated our automatic classification strategy with
respect to whether it grouped together multiple failures
corresponding to the same source file. We also checked
manually whether different source files triggered the same
defect.

For 12 of the 29 source files associated with GCC
failures, we were able to identify bug fixes in later
versions of the compiler that prevent the failures the files
induce, and we verified that each fix worked when applied
to the version under test (2.95.2). The remaining GCC
failures were classified by determining when the
corresponding test case stopped failing. For example, if
test A is fixed in the CVS version as of January 2000 and
test B keeps failing until July 2001, then we have reason
to believe that they failed because of different defects.
This required checking out, building, and testing enough
versions of the compiler to separate most tests, but it was
still less time-consuming than finding and porting specific
bug fixes. Because of the possibility of regression defects
introduced by changes to the compiler, the resulting
classification is not certain, but we believe it is a good
approximation. Only 3 pairs of source files were found to
induce failures caused by the same defect. Thus, the GCC
failures were apparently caused by 26 different defects.

The automatic clusterings of the javac 1.3.1 and Jikes
1.15 failures were examined manually in two stages. In
the first stage, the failures in each cluster were examined
to see if they actually had the same cause. In cases where
the failures in a cluster had different causes, we were often
able to identify sub-clusters consisting of failures with the
same cause. In the second phase, the groups of related
failures identified in the first phase were displayed using
hierarchical MDS, and overlapping groups were examined
manually to determine if the failures they contained
actually had the same cause.

In order to determine if different javac 1.3.1 failures
had the same cause, the following activities were
attempted in the order listed until one of them succeeded,
although activity (5) was always conducted:

1. Debugging javac 1.3.1. The causes of many of
the javac 1.3.1 failures were diagnosed using
conventional debugging techniques.

2. Comparing the javac 1.3.1 and javac 1.4 code
bases. A few of the tests that caused javac 1.3.1
to fail were found to succeed with javac 1.4 due
to identified bug fixes.

3. Examining error codes. It was found that the
input files corresponding to many of the javac
1.3.1 failures formed groups: the files in each
group were erroneously accepted by javac 1.3.1
but were rejected by javac 1.4 with the same
error code.

4. Inspecting failure-causing source files. It was
found that many of javac 1.3.1 failures were
caused by language constructs present in multiple
source files.

5. Checking the association between tests and Java
Language Specification sections. Some of the
javac 1.3.1 failures were classified based on the
fact that they involved tests of a language rule
described in a particular JLS section.

To determine if different Jikes 1.15 failures had the
same cause, the same five activities were attempted, with

Table 1. Comparison of automatic clustering and
manual classification for GCC data set.

Number
of

clusters

% size of largest group
of failures in cluster with

same cause

Total failures
(136)

21 100 77 (57%)

1 83 6 (4%)

3 75,75, 71 23 (17%)

1 60 5 (4%)

1 24 25 (18%)

versions 1.15 and 1.16 of Jikes used in place of versions
1.3.1 and 1.4 of javac. Most groups of related failures
were identified using activity (1) or activity (3).

8.2 Results

8.2.1 GCC. The GCC failures were automatically
clustered into 27 clusters, as suggested by the Calinski-
Harabasz index. The failures in each cluster were
analyzed manually to determine the percentage size of the
largest subgroup with the same apparent cause. The
results are summarized in Table 1. Most of the clusters
were comprised of failures caused by the same defect.
Five clusters, of sizes between 5 and 8, contained failures
caused by two different defects. One cluster, however,
contained 25 failures caused by 7 different defects.
Figure 1 shows a hierarchical MDS display of the GCC
failures, calculated using the profile features selected in
phase (2) of our classification strategy. Convex hulls

indicate the results of automatic clustering.
Figure 2 is another HMDS display of the GCC

failures, in which convex hulls are drawn around each
group of failures that manual analysis indicated were
caused by the same defect. In this display, groups of
failures corresponding to particular defects are well
separated, suggesting that visual classification of failures
is likely to be successful. Comparing Figure 1 to Figure 2
confirms that automatic clustering tended to group
together failures with the same cause. However, these
figures also indicate that automatic clustering erroneously
split some groups of failures with the same cause. Of
these 26 groups of failures, 5 had their failures split across
two clusters, 2 had their failures split across 3 clusters,
and one more was split across 4 clusters.

Figure 3 is an HMDS display of the GCC failures that
was calculated using all profile features. As in Figure 2,
convex hulls are drawn around each group of failures that
manual analysis indicated were caused by the same defect.
There is much more overlap of these convex hulls than in
Figure 2. It turns out that Figure 3 overemphasizes the
effect of optimization levels. For each source file, high
optimization tests are placed to the left of the display,
while low optimization tests are on the right. The
difference between Figures 2 and 3 illustrates the
importance of feature selection in our classification
strategy.

8.2.2 javac. The javac failures were automatically
clustered into 26 clusters. The failures in each cluster
were examined manually to determine the percentage size
of the largest subgroup with the same apparent cause.
Table 2 summarizes the results for different groups of
clusters comprising 21 clusters. (The remaining 5 clusters
comprised 4 singletons and 1 cluster of size 2 whose
elements could not be classified decisively.) Overall, in
22 of the 26 automatically generated clusters (85%), a

Figure 1. HMDS display for the GCC data set after
feature selection. Convex hulls indicate results of

automatic clustering into 27 clusters.

Figure 2. HMDS display for the GCC data set after
feature selection. Convex hulls indicate failures

involving same defect.

Figure 3. HMDS display for the GCC data set before
feature selection. Convex hulls indicate failures

involving same defect.

majority of failures appear to have the same cause. Note
that two large clusters formed by automatic clustering
were found to be heterogeneous. Manual analysis
revealed that both clusters had several sub-clusters, each
consisting of failures with the same apparent cause.

Figure 4 is a hierarchical MDS display of the javac
1.3.1 failures. Convex hulls have been drawn around
groups of failures that manual classification indicated
have the same cause. Some of the convex hulls are
compact and well separated from others, but some are
elongated or overlap. Automatic clustering performed
well in identifying the groups of failures whose convex
hulls were well separated from those of other groups, even
when they were elongated. It is unlikely that the
elongated clusters would be identified by inspection of the
HMDS display, although sub-clusters would. The groups
of failures in the upper right quadrant of Figure 4 whose
convex hulls overlapped noticeably were subject to further
manual analysis. It was found that the failures in the
overlapping groups actually had the same cause.
Automatic clustering erroneously split those groups.

8.2.3 Jikes. The Jikes failures were automatically

clustered into 42 clusters. The failures in each cluster
were analyzed manually to determine the percentage size
of the largest subgroup with the same apparent cause.
Table 3 summarizes the results for 29 of the 42 total
clusters. (The remaining 13 clusters comprised 9
singletons and 4 clusters whose elements could not be
classified decisively.) Overall, in 30 of the 42
automatically generated clusters (71%), a majority of
failures appear to have the same cause.

Figure 5 is a hierarchical MDS display of the Jikes
1.15 failures. Convex hulls have been drawn around
groups of failures that manual classification indicated
have the same cause. As with the HMDS display of the
javac failures, some of the convex hulls are compact and
well separated from others, but some are elongated or
overlap. Automatic clustering again did a good job of
clustering the groups of failures whose convex hulls were
well separated from those of other groups, even when the
convex hulls were elongated. The groups of failures in
the top left quadrant of Figure 5 whose convex hulls
overlap were subjected to further manual analysis, which
revealed that the failures in those groups had the same
cause. This was also true of one of the pairs of
overlapping groups in the top right quadrant of Figure 5.

Table 2. Results of manual examination of automatic
clustering for javac data set.

Number of
clusters

% size of largest group
of failures in cluster with

same cause

Total
 failures (232)

9 100 70 (30%)

5 88, 85, 85, 85, 83 64 (28%)

4 75, 67, 67, 57 49 (21%)

2 50, 50 20 (9%)

1 17 23 (10%)

Figure 4. HMDS display for the javac data set. Convex
hulls indicate the results of manual classification.

Table 3. Results of manual examination of
automatic clustering for Jikes data set.

Number of
clusters

% size of largest group
of failures in cluster with

same cause

Total
failures
(225)

12 100 64 (29%)

5 75, 75, 80, 83, 85 41 (18%)

4 56, 67, 67, 70 25 (11%)

8 25, 33, 33, 41, 43, 50,
50, 50

76 (34%)

Figure 5. HMDS display for the jikes data set. Convex
hulls indicate the results of manual classification.

8.3 Summary

Automatic clustering assigned most of the failures for
each subject programs to clusters in which the majority of
failures appear to have the same cause. However,
automatic clustering created a few large, non-
homogeneous clusters with sub-clusters consisting of
failures with the same cause. The sub-clusters were
evident in the corresponding HMDS displays. In other
cases automatic clustering erroneously split groups of
failures with the same cause, but the HMDS displays did
not provide clear evidence that these groups were
homogeneous. Overall, groups of failures with the same
cause tended to form fairly cohesive clusters in the HMDS
displays. Small, tight clusters in the displays were quite
likely to contain failures with the same cause, although
they were not always maximal.

8.4 Threats to Validity

Clearly, it is not possible to conclude from the
experiments described here that our classification strategy
will be generally effective. Although the subject
programs are substantial in size and are widely used, all of
them are compilers. Also, hand crafted test inputs were
used rather than operational inputs. Test inputs like those
in the GCC and Jacks test suites are generally smaller than
typical compiler inputs and so the corresponding profiles
may be less “noisy” than profiles of operational inputs
would be.8 Additional evaluation of the classification
strategy is necessary, especially with different kinds of
software and with actual failure reports from users.

9. RELATED WORK

Several previous papers have addressed issues closely
related to failure classification and prioritization.
Agrawal, et al describe the χSlice tool, which analyzes
system tests to facilitate location of defects [1]. χSlice
visually highlights differences between the execution slice
of a test that induces a failure and the slice of a test that
does not. Reps, et al investigate the use of a type of
execution profile called a path spectrum for discovering
Year 2000 problems and other kinds of defects [22].
Their approach involves varying one element of a
program’s input between executions and analyzing the
resulting spectral differences to identify paths along which
control diverges. Hildebrandt and Zeller describe a delta
debugging algorithm that generalizes and simplifies
failure-inducing input to produce a minimal test case that

8 On the other hand, operational inputs may tend to form

more cohesive groups, which would aid our strategy.

causes a failure [10]. Their algorithm, which can be
viewed as a feature-selection algorithm, is applicable to
failure classification in the case that failure-causing inputs
reported by different users simplify to the same minimal
failure-causing input. Note that Hildebrandt and Zeller’s
approach requires an automated means of detecting
whether a simplified input causes the same kind of failure
as the original input.

Podgurski, et al used cluster analysis of profiles and
stratified random sampling to improve the accuracy of
software reliability estimates [21]. Leon, et al describe
several applications of multivariate visualization in
observation-based (software) testing, including analyzing
synthetic test suites, filtering operational tests and
regression tests, comparing test suites, and assessing bug
reports [18]. Dickinson, et al present a technique called
cluster filtering for filtering test cases [4][5]. This
technique involves clustering profiles of test executions
and sampling from the resulting clusters. They present
experimental evidence that cluster filtering is effective for
finding failures when unusual executions are favored for
selection. Note that the aforementioned work on
observation-based testing differs from the work reported
here in three main respects:
� The goal of the previous work was to identify

possible failures in set of mostly successful executions.
The goal of the current work is to group together those
failures among a set of reported failures that have
closely related causes.

� The previous work did not involve user feedback; the
current work depends upon failure reports from users.

� The previous work applied unsupervised pattern
classification techniques to complete program profiles.
The current work uses supervised pattern classification
techniques to select relevant profile features prior to
clustering or visualization.

10. CONCLUSIONS

The results of applying our classification strategy to
GCC, Jikes, and javac suggest that the strategy is
workable and can be effective. It is especially notable that
the strategy performed well with a relatively simple type
of classifier and with coarse-grained execution profiles; it
may perform even better with more powerful classifiers
and more detailed profiles. However, before firm
conclusions can be drawn about the effectiveness of the
classification strategy, it is necessary to evaluate it using a
number of additional subject programs of different types.
It is especially important to evaluate it with deployed
software and with failure reports from users. Other basic
issues to be resolved in future work include the best
choices of methods for profiling, classification, clustering,

and visualization and the best way to integrate these
methods during failure classification.

11. ACKNOWLEDGEMENTS

This work was supported by National Science Foundation
award CCR-0098325 to Case Western Reserve
University.

12. REFERENCES

[1] Agrawal, H., Horgan, J.J., London, S., and Wong, W.E.
Fault location using execution slices and dataflow tests. 6th
IEEE Intl. Symp. on Software Reliability Engineering
(Toulouse, France, October 1995), 143-151.

[2] Borg, I. and Groenen, P. Modern Multidimensional
Scaling: Theory and Applications. Springer-Verlag, New
York, 1997.

[3] Calinski, R.B. and Harabasz, J. A dendrite method for
cluster analysis. Communications in Statistics 3, 1-27.

[4] Dickinson, W., Leon, D., and Podgurski, A. Finding
failures by cluster analysis of execution profiles. 23rd Intl.
Conf. on Software Engineering (Toronto, May 2001), 339-
348.

[5] Dickinson, W., Leon, D., and Podgurski, A. Pursuing
failure: the distribution of program failures in a profile
space. 10th European Software Engineering Conf. and 9th
ACM SIGSOFT Symp. on the Foundations of Software
Engineering (Vienna, September 1997), ACM Press, 246-
255.

[6] Duda, R.O., Hart, P.E., and Stork, D.G. Pattern
Classification, 2nd edition. Wiley, New York, 2001.

[7] GCC. The GCC Home Page,
www.gnu.org/software/gcc/gcc.html, Free Software
Foundation, 2002.

[8] Gordon, A.D. Classification. Chapman and Hall/CRC,
Boca Raton, 1999.

[9] Hastie, T., Tibishirani, R., and Friedman, J. The Elements
of Statistical Learning: Data Mining, Inference, and
Prediction. Springer-Verlag, New York, 2001.

[10] Hildebrandt, R. and Zeller, A. Simplifying failure-inducing
input. 2000 Intl. Symp. on Software Testing and Analysis
(Portland, August 2000), ACM Press, 135-145.

[11] Jacks, International Business Machines Corporation, Jacks
Project, www.ibm.com/developerworks/oss/cvs/jacks/,
2002.

[12] Java Language Specification, Sun Microsystems, Inc.,
java.sun.com/docs/books/jls/second_edition/html/j.title.doc
.html, 2000.

[13] JavaTM Virtual Machine Profiler Interface (JVMPI).
http://java.sun.com/j2se/1.3/docs/guide/jvmpi/jvmpi.html,
2001.

[14] Javac, Sun Microsystems Inc., Java™ 2 Platform, Standard
Edition, java.sun.com/j2se/1.3/, 1995 – 2002

[15] Jikes, IBM developerWorks, www-124.ibm.com/
developerworks/opensource/jikes/, 2002.

[16] Kaufman, L. and P.J. Rousseeuw. Finding Groups in Data.
John Wiley & Sons, New York, 1990.

[17] Leon, D., Podgurski, A., and Dickinson, W. Visualizing
distances between executions. Technical Report #02-12,
EECS Dept., Case Western Reserve University.

[18] Leon, D., Podgurski, A., and White, L.J. Multivariate
visualization in observation-based testing. 22nd Intl. Conf.
on Software Engineering (Limerick, Ireland, June 2000),
ACM Press, 116-125.

[19] Liu, H. and Setiono, R. Feature selection and
classification: A probabilistic wrapper approach. 9th Intl.
Conf. on Industrial and Engineering Applications of AI and
ES, 1996, 284-292.

[20] The Mozilla Project, www.mozilla.org.

[21] Podgurski, A., Masri, W., McCleese, Y., Wolff, F.G., and
Yang, C. Estimation of software reliability by stratified
sampling. ACM Trans. on Software Engineering and
Methodology 8, 9 (July 1999), 263-283.

[22] Reps, T., Ball, T., Das, M., and Larus, J. The use of
program profiling for software maintenance with
applications to the Year 2000 Problem. 6th European
Software Engineering Conf. and 5th ACM SIGSOFT
Symp. on the Foundations of Software Engineering
(Zurich, September 1997), ACM Press, 432-449.

[23] S-PLUS 6 statistical software. www.insightful.com.

[24] Steven, J., Chandra, P., Fleck, B., and Podgurski, A.
jRapture: a capture/replay tool for observation-based
testing. 2000 Intl. Symp. on Software Testing & Analysis
(Portland, Oregon, August 2000), ACM Press, 158-167.

	Introduction
	How classification helps
	Classification strategy
	Applicable forms of profiling
	Feature Selection
	Grouping related failures
	Automatic cluster analysis
	Multivariate visualization

	Confirming or refining the initial classification
	Experimental validation
	Experimental methodology
	Subject Programs, Inputs, and Profiles. The three subject programs for this study were all compilers: the GCC compiler for C [7] and the Jikes [15] and javac [14] Java compilers. These programs were chosen for several reasons: they are large; they can
	Feature Selection. Phase (2) of our classification strategy was implemented using the S-PLUS 6 statistical computing environment [23]. Logistic regression (LR) models were used as classifiers. These were implemented using the S-PLUS function glm. An
	Cluster Analysis. To group failures together automatically, we used the S-PLUS cluster analysis algorithm clara, which is based on the k-medoids clustering criterion [16]. To estimate the number of clusters in the data, the Calinski-Harabasz index CH(c
	Visualization. For each subject program, the sub-profiles induced by the features of the best classification model were displayed using the hierarchical MDS (HMDS) algorithm described in [17]. This algorithm was designed to minimize the error in repres
	Manual Examination of Failures. In many cases, we were able to diagnose the specific cause of a group of failures. In other cases, this was not possible, but other evidence was found that certain failures had the same cause. The nature of such evidenc

	Results
	GCC. The GCC failures were automatically clustered into 27 clusters, as suggested by the Calinski-Harabasz index. The failures in each cluster were analyzed manually to determine the percentage size of the largest subgroup with the same apparent cause.
	javac. The javac failures were automatically clustered into 26 clusters. The failures in each cluster were examined manually to determine the percentage size of the largest subgroup with the same apparent cause. Table 2 summarizes the results for diff
	Jikes. The Jikes failures were automatically clustered into 42 clusters. The failures in each cluster were analyzed manually to determine the percentage size of the largest subgroup with the same apparent cause. Table 3 summarizes the results for 29 o

	Summary
	Threats to Validity

	RELATED WORK
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

