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Abstract 

This paper proposes automated support for classifying 
reported software failures in order to facilitate 
prioritizing them and diagnosing their causes.  A 
classification strategy is presented that involves the use of 
supervised and unsupervised pattern classification and 
multivariate visualization.  These techniques are applied 
to profiles of failed executions in order to group together 
failures with the same or similar causes.  The resulting 
classification is then used to assess the frequency and 
severity of failures caused by particular defects and to 
help diagnose those defects.  The results of applying the 
proposed classification strategy to failures of three large 
subject programs are reported.  These results indicate 
that the strategy can be effective. 

1. Introduction 

Some recent software products such as Netscape 
Communicator and Mozilla and Microsoft Visual 
Studio.NET have the ability to detect certain of their own 
runtime failures and, with the user’s permission, report 
these to the software’s developer via the Internet.  A 
transmitted failure report includes information 
characterizing the state of the software at the time the 
failure was detected, which is intended to assist 
developers in diagnosing the failure’s cause.   Some 
applications, including the Visual Studio.NET beta 
version, have a feature that allows a user to transmit a 
failure report (bug report) to the developer whenever they 
believe the application has behaved incorrectly, that is, 
even if the application did not detect a failure itself.  The 
report typically contains the user’s characterization of the 
failure and may also contain information about the 
application state.  Such automated support for reporting 
failures and collecting diagnostic information is a 
significant advance in software development technology.  

Traditionally, developers have relied upon users to report 
software failures by email or telephone and to provide 
detailed information about the conditions under which 
they occurred so their cause could be diagnosed.  Often, 
however, users are unable to provide adequate 
information even when they are questioned by support 
personnel. 

Although automated failure reporting and collection 
of diagnostic information facilitates debugging, it is also 
likely to exacerbate another problem encountered by 
software developers: they often receive many more failure 
reports than they have time to investigate thoroughly.  
Developers attempt to classify and prioritize the failure 
reports they receive, so they can address at least the most 
significant ones.  With automated problem reporting, the 
number of failure reports received by developers seems 
likely to increase dramatically.  If so, manual 
classification and prioritization of these reports may 
become infeasible. 

This paper proposes automated support for 
classifying reported software failures so as to facilitate 
prioritizing them and diagnosing their causes.   A 
classification strategy is presented that involves the use of 
supervised and unsupervised pattern classification1 and 
multivariate visualization.  These techniques are applied 
to execution profiles in order to group together reported 
failures with closely related causes.  Failures are initially 
classified before their cause is investigated manually.  
Limited manual investigation may then be done to confirm 
or, if necessary, refine the initial classification.  The 
resulting classification is then used to assess the 
operational frequency and severity of failures caused by 
particular defects and to diagnose those defects. We report 
the results of applying the proposed classification strategy 
to failures of three large subject programs.  These results 
indicate that the strategy can be effective. 
                                                           
1 Supervised pattern classification techniques require a 

training set with positive and negative instances of a 
pattern; unsupervised techniques do not. 



 

 

We now outline the remainder of the paper.  Section 
2 explains how classification of failures facilitates 
maintenance.  Section 3 outlines our strategy for 
classifying failures.  Sections 4-7 describe the phases of 
the strategy in detail.  Section 8 describes our 
experimental results.  Section 9 surveys related work.  
Finally, conclusions and future work are presented in 
Section 10. 

2. How classification helps 

(Note on terminology:  We use the terms “software 
failure” and “failure” as synonyms for “failed program 
execution”.) 

When software has many users it is common for 
different users to report failures that are due to the same 
defect, although this may not be obvious from the users’ 
descriptions of the failure.  Thus, if users report m failures 
over some period during which the software is executed n 
times in total, it is likely that these failures are due to a 
substantially smaller number k of distinct defects.  Let F = 
{f1, f2, ..., fm} be the set of reported failures.  For 
simplicity, assume that all reported failures are actual ones 
and that each failure is caused by just one defect.  Then F 
can be partitioned into k < m subsets F1, F2, ..., Fk such 
that all of the failures in Fi are caused by the same defect 
di for 1 ≤ i ≤ k.  We call this partition the true failure 
classification.  Knowledge about the true failure 
classification is valuable to software developers for the 
following reasons: 
� k is the number of defects responsible for reported 

failures. 
� |Fi|/n is an estimate of the frequency with which 

defect di causes failures in the field. 
� The failures in Fi are the executions that are most 

relevant to diagnosing the defect di. and to determining 
its severity. 

� To diagnose and repair di, it should usually suffice to 
investigate at most a few of the failures in Fi in detail. 

Although in principle developers can determine the 
true failure classification exactly by manually diagnosing 
the cause of each failure fi, 1 ≤ i ≤ m, this may be 
impractical, and it largely defeats the purpose of 
prioritizing reported failures.  Instead, we propose using 
automatic classification and multivariate visualization 
techniques to approximate the true failure classification 
with much less human effort.  The approximation is 
unlikely to be exact, because of estimation error and 
because the techniques we employ are based on 
correlations that may or may not indicate causation.  
Nevertheless, we hypothesize that even a rough 
approximation to the true failure classification can be of 
great practical value to developers.  Moreover, it is 

possible to refine the initial classification as more 
information is obtained. 

Classifying program crashes and aborts is an 
important special case of the failure classification problem 
that is generally easier to solve than the general case, 
provided that information about the program state just 
before each crash or abort, such as a call-stack trace, is 
available.  For example, in postings on the Mozilla project 
[20] the fact that multiple crashes occurred at the same 
instruction and with the same call stack is used as 
evidence that the crashes have the same cause.2  Note that 
this paper addresses the more difficult general case of 
failure classification, where a user may not realize that a 
failure has occurred until well after the defective code that 
caused it has executed. 

3. Classification strategy 

The basic strategy we present for approximating the 
true failure classification has four phases: 

1. The software is instrumented to collect and 
transmit to the developer either execution 
profiles or captured executions, and it is then 
deployed.  (Captured executions can be replayed 
offline to obtain whatever kind of profile is 
desired [24].) 

2. Execution profiles corresponding to reported 
failures are combined with a random sample of 
profiles of operational executions for which no 
failures were reported.  This set of profiles is 
then analyzed to select a subset of all profile 
features3 (a projection) to use in grouping related 
failures.  The feature selection strategy is to: 

a. Generate candidate feature-sets and use 
each one to create and train a pattern 
classifier to distinguish failures from 
successful executions.  

b. Select the features of the classifier that 
performs best overall. 

3. The profiles of reported failures are analyzed 
using cluster analysis and/or multivariate 
visualization techniques, in order to group 
together failures whose profiles are similar with 
respect to the features selected in phase (2).   

                                                           
2 James Larus of Microsoft Research informed one of the 

authors (Podgurski) that Microsoft Corporation 
internally uses automated heuristics to classify crash 
reports produced by its products. 

3 By a feature of an execution profile we mean an attribute 
or element of it.  For example, a function call profile 
contains an execution count for each function in a 
program, and each count is a feature of the profile. 



 

 

4. The resulting classification of failures into 
groups is explored in order to confirm it or, if 
necessary, refine it. 

The result of approximating the true failure 
classification using this strategy is a partition C  = {G1, 
G2, ..., Gp} of F.  We call C the approximate failure 
classification.  For it to be useful, all or most of the 
groups Gi should contain all or mostly failures with 
closely related causes. 

Phases (1)–(4) of the classification strategy are 
described in Sections 4–7, respectively. 

4. Applicable forms of profiling 

The kind of information that can be used in 
automatically classifying arbitrary software failures is not 
limited to the kind of information that is typically 
considered in debugging, e.g., the value of the program 
counter, the values of key variables, and the contents of 
the call stack when a failure occurs.  Any kind of 
execution profile can be used that is potentially relevant to 
the occurrence of failures and that can be collected from 
the field without inconveniencing users unduly.  This 
includes both generic and application-specific profiles 
characterizing such aspects of a program’s execution as its 
control flow, data flow, input values and other variable 
values, and event sequences.  For example, profiles might 
include execution counts for basic blocks, conditional 
branches, functions, definition-use chains, or state 
transitions.  Profiles can be augmented with information 
obtained from users when they reported failures, e.g., by 
having them complete a form. 

Both the causes of failures and their effects are 
relevant to classifying them, and hence the form of 
profiling should be chosen to reflect both if possible.  
Since failures often involve small parts of a large 
program, profiles should generally be as detailed (fine-
grained) as possible, considering profiling overhead and 
analysis costs.  Coarse-grained profiles are unlikely to 
distinguish between different defects in the same fragment 
of code. 

5. Feature Selection 

The second phase in our strategy for approximating 
the true failure classification involves selecting a subset of 
all profile features to use in grouping failures.  This step is 
necessary because execution profiles typically have 
thousands of features, many of which are not relevant to 
the occurrence of failures.  For example, a profile might 
contain an execution count for each basic block in a large 
program.  We hypothesize that the profile features that 
are most relevant to classifying failures according to their 
causes are the features that are most useful for 

distinguishing reported failures from successful 
executions. 
 The approach to feature selection used in the experiments 
reported in Section 8.1.2 is a modification of the 
probabilistic wrapper method of Liu and Setiono [19].4  
Random sets of features of given size are generated 
iteratively.  Each set of features and one part of the profile 
data is used to train a classifier.  The misclassification rate 
of each classifier is estimated using another part of the 
profile data, and the features used by the classifier with 
the smallest estimated misclassification rate are chosen for 
use in phase (3) of our classification strategy. 

Many types of statistically-based classifiers have been 
developed by researchers [6][9].  This paper does not 
address the issue of which of these types of classifiers is 
best suited to classifying program failures.  Its goal is to 
provide evidence that some classifiers are useful for this 
purpose.  Hence, in the experiments reported in Section 8, 
we employ a widely-used but relatively simple type of 
classifier: logistic regression models.  Binary logistic 
regression is a type of statistical regression in which the 
dependent variable Y represents one of two possible 
outcomes or responses, such as failure or success in the 
case of a program execution [9].  In logistic regression, 
the expected value E(Y | x) of Y given the vector of 
predictor values x = (x1, x2, ..., xp) is π(x) = P(Y = 1 | x).  
The conditional probability π(x) is modeled by 
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is a linear function of x.  Each coefficient represents the 
change in log odds of the response per unit change in the 
corresponding predictor.  When logistic regression is used 
for classification, the coefficients of g(x) are estimated 
from a sample of x and Y values to obtain an estimator 

)(ˆ xg  for g(x).  The outcome for input x is classified as a 1 
if an only if 0)(ˆ >xg , that is, if and only if the estimated 
odds of a 1 exceed the estimated odds of a 0. 

6. Grouping related failures 

We consider two alternative approaches to grouping 
related failures in phase (3) of our classification strategy.  
The first approach calls for applying automatic cluster 
analysis5 to the sub-profiles induced by the profile 
                                                           
4 In the wrapper approach to feature selection, candidate 

feature sets are evaluated by using them to train 
classifiers, whose misclassification rates are estimated. 

5 Cluster analysis is an example of unsupervised learning. 



 

 

features selected in phase (2).  The second approach 
involves applying a multivariate visualization technique 
such as multidimensional scaling to the aforementioned 
sub-profiles to produce a two-dimensional scatter plot 
display representing the similarity or dissimilarity of the 
sub-profiles to each other.  This display is then inspected 
and clusters are identified visually.6 

6.1 Automatic cluster analysis 

Ideally, the process of grouping failures according to 
their likely causes would be fully automated.  This 
suggests applying automated cluster analysis [8] to the 
sub-profiles induced by the profile features selected in 
phase (2) of our classification strategy.  Cluster analysis 
algorithms identify clusters among a set of objects 
according to the similarity or dissimilarity of their feature 
vectors, as measured by a dissimilarity metric such as d-
dimensional Euclidean distance or Manhattan distance.  
Roughly speaking, objects that are more similar to one 
another than to other objects are placed in the same 
cluster.  In order to automatically group failures according 
to their causes, it is necessary  to estimate the number of 
clusters among them.  Although many approaches to 
finding the “best” number of clusters in a population have 
been proposed (see [8] for examples), the problem is quite 
difficult, because there are often several “reasonable” 
ways to cluster the same population.  Hence, we have 
concluded that it is unwise to depend solely on automatic 
cluster analysis to group reported failures according to 
their likely causes.  We propose instead that cluster 
analysis be used together with other techniques, such as 
multivariate visualization. 

One widely used measure of the goodness of a 
clustering into c clusters, which we employ in Section 8, is 
the index due to Calinski and Harabasz [3]: 
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where B is the total between-cluster sum of squared 
distances, W is the total within-cluster sum of squared 
distances from the cluster centroids, and n is the number 
of objects in the population.  To use CH(c), its value is 
plotted for c = 2, 3, ... n, and local maxima are considered 
as alternative estimates of the number of clusters. 

6.2 Multivariate visualization 

Multivariate visualization methods such as 
multidimensional scaling (MDS) represent a set of objects 

                                                           
6 Note that if profiles of successful executions are 

unavailable clustering can be done based on all profile 
features, at the cost of some precision. 

characterized by dissimilarity or similarity measurements 
as points in a low dimensional space such as a two-
dimensional display [2].  A two-dimensional display 
produced with MDS is a kind of scatter plot.  The points 
are positioned so that the distance between each pair of 
points approximates the dissimilarity between the 
corresponding objects.  An arbitrary dissimilarity matrix 
can be input to multidimensional scaling, so it can be used 
with a variety of dissimilarity metrics. 

We propose that multidimensional scaling be used to 
display the sub-profiles induced by the profile features 
selected in phase (2) of our classification strategy, so that 
groups of related failures can be identified by visual 
inspection of the resulting scatter plot.  We hypothesize 
that apparent clusters of points in the display will often 
correspond to such groups of failures.  With visualization, 
users can judge themselves which failures are most closely 
related, rather than relying on a fixed clustering criterion 
as in automatic cluster analysis.  A drawback of 
visualization for this purpose is that in projecting high 
dimensional data onto just two dimensions, small 
dissimilarities may be poorly represented in the display.  
Approaches to addressing this issue are presented in [17].  
To better distinguish individual clusters, automatic cluster 
analysis should be used together with visualization.  
Clusters found automatically can be highlighted in an 
MDS display, e.g., by coloring their points or drawing 
their convex hulls.  

We have developed a visualization tool that supports 
MDS of large sets of execution profiles and provides 
features useful for classifying failures, including ones for: 
selecting a group of points in the display and determining 
the corresponding executions; magnifying regions of the 
display; and highlighting specified sets of points such as 
clusters. 

7. Confirming or refining the initial 
classification 

Given an initial approximation to the true failure 
classification, a software developer might choose to use it 
“as is” for the purpose of prioritizing reported failures.  
However, it is prudent to do some additional work to 
confirm or, if necessary, refine the initial classification.  
This can be done by: 

1. Selecting a few failures (two or more) from each 
group of failures. 

2. Attempting to determine if the failures selected 
from a group actually have closely related 
causes, using conventional debugging 
techniques. 

3. Attempting to determine if similar groups contain 
failures with the same cause. 



 

 

Step (2) is especially important with clusters that are 
elongated or are “loose”, because such clusters have high 
internal dissimilarity.  If all of the failures selected from a 
group turn out to have closely related causes, this is 
further evidence that all or most of the failures in the 
group do.  Otherwise the initial classification should be 
refined.  Step (3) is applicable to neighboring clusters.  

One criterion for deciding which failures to select 
from a group is that ones with maximally dissimilar 
profiles should be chosen.  For example, one might select 
one failure from each end of an elongated cluster.  Such 
failures can be selected automatically or by inspection of a 
scatter plot display.  If the selected failures have the same 
or similar causes, one might conclude that all of the 
failures between them in the cluster do also.  If they have 
dissimilar causes, one should seek a good place to split the 
cluster into two or more pieces. 

8. Experimental validation 

In order to evaluate the effectiveness of our 
classification strategy, we implemented its first three 
phases with three large subject programs.   Automatic 
cluster analysis was used to classify failures, and the 
resulting clusters were then examined manually.  To be 
thorough, we examined all or most of the failures in each 
cluster rather than sampling just a few failures from each 
cluster as described in Section 7. 

8.1 Experimental methodology 

8.1.1 Subject Programs, Inputs, and Profiles.  The 
three subject programs for this study were all compilers: 
the GCC compiler for C [7] and the Jikes [15] and javac 
[14] Java compilers.  These programs were chosen for 
several reasons: they are large; they can be executed 
repeatedly with a script; source code for a number of 
versions is available; and self-validating test suites are 
available for them.  Unfortunately, we did not have access 
to failure reports from ordinary users.  Instead, our 
classification strategy was applied to the failures detected 
by self-validating tests. 

Version 2.95.2 (Debian GNU/Linux) of the GCC 
compiler for C was used. Only the C compiler proper was 
profiled.  The compiler was executed on a subset of the 
regression test suite for GCC, consisting of tests that 
actually execute compiled code.  These came from the test 
suite shipped with GCC 3.0.2, which included tests for 
defects still present in version 2.95.2.  GCC was executed 
on 3333 tests and failed 136 times.  Version 1.15 of Jikes 
and javac build 1.3.1_02-b02 were executed on the Jacks 
test suite (as of 2/15/02) [11], which tests adherence to the 
Java Language Specification [12].  Jikes was executed on 
3149 tests and failed 225 times; javac was executed on 

3140 tests and failed 233 times. Note that the Jacks test 
suite contains tests that are specific to the Jikes and javac 
compilers. GCC and Jikes, which are written in C and 
C++ respectively, were profiled using the GNU test 
coverage profiler Gcov, which is distributed with GCC. 
To profile javac, which is written in Java, a simple 
profiler was written by using the Java Virtual Machine 
Profiling Interface [13].  For each test t of one of the 
subject programs, the generated profile consisted of a 
vector of counts, with one count per function in the 
program.  The count for each function f indicated how 
many times f was executed during test t.  Note that GCC 
had 2214 functions, Jikes had 3644 functions, and javac 
had 1554 functions. 

8.1.2 Feature Selection.  Phase (2) of our 
classification strategy was implemented using the S-PLUS 
6 statistical computing environment [23].  Logistic 
regression (LR) models were used as classifiers.  These 
were implemented using the S-PLUS function glm.  An S 
language program was written to iteratively generate 400-
500 candidate models per data set and to fit and evaluate 
them.  Each model included 500 randomly selected 
features.7  The  S program output the best model of a 
given type.  To avoid underestimating the 
misclassification rate of models, the original set of 
profiles for each subject program was randomly 
partitioned into three subsets (Train, TestA, and TestB) 
comprising 50%, 25%, and 25% of the original set, 
respectively.  The profiles in Train were used to train 
candidate models; those in TestA were used to pick the 
best model (i.e., for model validation); those in TestB 
were used to produce a final estimate of the best model’s 
misclassification rate. 

The measure used to pick the best model was the 
average of the percentage of misclassified failures and the 
percentage of misclassified successes.  This measure gives 
more weight to the misclassification of failures than does 
the overall misclassification rate.  For each of the data sets 
(GCC, javac, and Jikes), the final logistic regression 
model correctly classified at least 72% of failures and at 
least  91% of successes.  It is notable that S-PLUS 
reported that a substantial number of selected features 
were not used in the fitted logistic regression models, 
because they were linearly dependent on other features.  
We did not use those features for clustering or 
visualization either. 

                                                           
7 The number of candidate models generated and the 

number of features used were selected based on 
preliminary experiments.  They represent a tradeoff 
between classifier performance and total training time. 



 

 

8.1.3 Cluster Analysis.  To group failures together 
automatically, we used the S-PLUS cluster analysis 
algorithm clara, which is based on the k-medoids 
clustering criterion [16].  To estimate the number of 
clusters in the data, the Calinski-Harabasz index CH(c) 
was plotted for 2 ≤ c ≤ 50 and its local maxima were 
examined.   

8.1.4 Visualization.  For each subject program, the 
sub-profiles induced by the features of the best 
classification model were displayed using the hierarchical 
MDS (HMDS) algorithm described in [17].  This 
algorithm was designed to minimize the error in 
representing small dissimilarities between execution  
profiles. 

8.1.5 Manual Examination of Failures.  In many 
cases, we were able to diagnose the specific cause of a 
group of failures.  In other cases, this was not possible, 
but other evidence was found that certain failures had the 
same cause.  The nature of such evidence varied with the 
subject program.  The GCC failures were manually 
classified by exploiting the organization of the GCC test 
suite and information about later versions of the compiler. 
Each execution test in the GCC test suite involves 
compiling a simple source file and executing the resulting 
program.  For each source file, multiple tests are run, each 
with a different optimization level as some defects are 
triggered only at certain optimization levels.  Since each 
source file is designed to reveal a specific defect, we 
evaluated our automatic classification strategy with 
respect to whether it grouped together multiple failures 
corresponding to the same source file. We also checked 
manually whether different source files triggered the same 
defect. 

For 12 of the 29 source files associated with GCC 
failures, we were able to identify bug fixes in later 
versions of the compiler that prevent the failures the files 
induce, and we verified that each fix worked when applied 
to the version under test (2.95.2).  The remaining GCC 
failures were classified by determining when the 
corresponding test case stopped failing.  For example, if 
test A is fixed in the CVS version as of January 2000 and 
test B keeps failing until July 2001, then we have reason 
to believe that they failed because of different defects.  
This required checking out, building, and testing enough 
versions of the compiler to separate most tests, but it was 
still less time-consuming than finding and porting specific 
bug fixes.  Because of the possibility of regression defects 
introduced by changes to the compiler, the resulting 
classification is not certain, but we believe it is a good 
approximation.  Only 3 pairs of source files were found to 
induce failures caused by the same defect.  Thus, the GCC 
failures were apparently caused by 26 different defects. 

The automatic clusterings of the javac 1.3.1 and Jikes 
1.15 failures were examined manually in two stages.  In 
the first stage, the failures in each cluster were examined 
to see if they actually had the same cause.  In cases where 
the failures in a cluster had different causes, we were often 
able to identify sub-clusters consisting of failures with the 
same cause.  In the second phase, the groups of related 
failures identified in the first phase were displayed using 
hierarchical MDS, and overlapping groups were examined 
manually to determine if the failures they contained 
actually had the same cause. 

In order to determine if different javac 1.3.1 failures 
had the same cause, the following activities were 
attempted in the order listed until one of them succeeded, 
although activity (5) was always conducted: 

1. Debugging javac 1.3.1.  The causes of many of 
the javac 1.3.1 failures were diagnosed using 
conventional debugging techniques. 

2. Comparing the javac 1.3.1 and javac 1.4 code 
bases.  A few of the tests that caused javac 1.3.1 
to fail were found to succeed with javac 1.4 due 
to identified bug fixes. 

3. Examining error codes.  It was found that the 
input files corresponding to many of the javac 
1.3.1 failures formed groups: the files in each 
group were erroneously accepted by javac 1.3.1 
but were rejected by javac 1.4 with the same 
error code. 

4. Inspecting failure-causing source files.  It was 
found that many of javac 1.3.1 failures were 
caused by language constructs present in multiple 
source files. 

5. Checking the association between tests and Java 
Language Specification sections.  Some of the 
javac 1.3.1 failures were classified based on the 
fact that they involved tests of a language rule 
described in a particular JLS section. 

To determine if different Jikes 1.15 failures had the 
same cause, the same five activities were attempted, with 

Table 1. Comparison of automatic clustering and 
manual classification for GCC data set. 

Number 
of 

clusters 

% size of largest group 
of failures in cluster with 

same cause 

Total failures 
(136) 

21 100 77 (57%) 

1 83 6 (4%) 

3 75,75, 71 23 (17%) 

1 60 5 (4%) 

1 24 25 (18%) 



 

 

versions 1.15 and 1.16 of Jikes used in place of versions 
1.3.1 and 1.4 of javac.  Most groups of related failures 
were identified using activity (1) or activity (3). 

8.2 Results 

8.2.1 GCC.  The GCC failures were automatically 
clustered into 27 clusters, as suggested by the Calinski-
Harabasz index.  The failures in each cluster were 
analyzed manually to determine the percentage size of the 
largest subgroup with the same apparent cause.  The 
results are summarized in Table 1.  Most of the clusters 
were comprised of failures caused by the same defect.  
Five clusters, of sizes between 5 and 8, contained failures 
caused by two different defects.  One cluster, however, 
contained 25 failures caused by 7 different defects.  
Figure 1 shows a hierarchical MDS display of the GCC 
failures, calculated using the profile features selected in 
phase (2) of our classification strategy.  Convex hulls 

indicate the results of automatic clustering. 
Figure 2 is another HMDS display of the GCC 

failures, in which convex hulls are drawn around each 
group of failures that manual analysis indicated were 
caused by the same defect.  In this display, groups of 
failures corresponding to particular defects are well 
separated, suggesting that visual classification of failures 
is likely to be successful.  Comparing Figure 1 to Figure 2 
confirms that automatic clustering tended to group 
together failures with the same cause.  However, these 
figures also indicate that automatic clustering erroneously 
split some groups of failures with the same cause.  Of 
these 26 groups of failures, 5 had their failures split across 
two clusters, 2 had their failures split across 3 clusters, 
and one more was split across 4 clusters.  

Figure 3 is an HMDS display of the GCC failures that 
was calculated using all profile features.  As in Figure 2, 
convex hulls are drawn around each group of failures that 
manual analysis indicated were caused by the same defect.  
There is much more overlap of these convex hulls than in 
Figure 2.  It turns out that Figure 3 overemphasizes the 
effect of optimization levels.  For each source file, high 
optimization tests are placed to the left of the display, 
while low optimization tests are on the right. The 
difference between Figures 2 and 3 illustrates the 
importance of feature selection in our classification 
strategy. 

8.2.2 javac.  The javac failures were automatically 
clustered into 26 clusters.  The failures in each cluster 
were examined manually to determine the percentage size 
of the largest subgroup with the same apparent cause.  
Table 2 summarizes the results for different groups of 
clusters comprising 21 clusters.  (The remaining 5 clusters 
comprised 4 singletons and 1 cluster of size 2 whose 
elements could not be classified decisively.)  Overall, in 
22 of the 26 automatically generated clusters (85%), a 

Figure 1.  HMDS display for the GCC data set after 
feature selection.  Convex hulls indicate results of 

automatic clustering into 27 clusters. 

Figure 2.  HMDS display for the GCC data set after 
feature selection.  Convex hulls indicate failures 

involving same defect.

Figure 3.  HMDS display for the GCC data set before 
feature selection.  Convex hulls indicate failures 

involving same defect.



 

 

majority of failures appear to have the same cause.  Note 
that two large clusters formed by automatic clustering 
were found to be heterogeneous.  Manual analysis 
revealed that both clusters had several sub-clusters, each 
consisting of failures with the same apparent cause. 

Figure 4 is a hierarchical MDS display of the javac 
1.3.1 failures.  Convex hulls have been drawn around 
groups of failures that manual classification indicated 
have the same cause.  Some of the convex hulls are 
compact and well separated from others, but some are 
elongated or overlap.  Automatic clustering performed 
well in identifying the groups of failures whose convex 
hulls were well separated from those of other groups, even 
when they were elongated.  It is unlikely that the 
elongated clusters would be identified by inspection of the 
HMDS display, although sub-clusters would.  The groups 
of failures in the upper right quadrant of Figure 4 whose 
convex hulls overlapped noticeably were subject to further 
manual analysis.  It was found that the failures in the 
overlapping groups actually had the same cause.  
Automatic clustering erroneously split those groups. 

8.2.3 Jikes.  The Jikes failures were automatically 

clustered into 42 clusters.  The failures in each cluster 
were analyzed manually to determine the percentage size 
of the largest subgroup with the same apparent cause.  
Table 3 summarizes the results for 29 of the 42 total 
clusters.  (The remaining 13 clusters comprised 9 
singletons and 4 clusters whose elements could not be 
classified decisively.)  Overall, in 30 of the 42 
automatically generated clusters (71%), a majority of 
failures appear to have the same cause. 

Figure 5 is a hierarchical MDS display of the Jikes 
1.15 failures.  Convex hulls have been drawn around 
groups of failures that manual classification indicated 
have the same cause.  As with the HMDS display of the 
javac failures, some of the convex hulls are compact and 
well separated from others, but some are elongated or 
overlap.  Automatic clustering again did a good job of 
clustering the groups of failures whose convex hulls were 
well separated from those of other groups, even when the 
convex hulls were elongated.  The groups of failures in 
the top left quadrant of Figure 5 whose convex hulls 
overlap were subjected to further manual analysis, which 
revealed that the failures in those groups had the same 
cause.  This was also true of one of the pairs of 
overlapping groups in the top right quadrant of Figure 5.   

Table 2. Results of manual examination of automatic 
clustering for javac data set. 

Number of 
clusters 

% size of largest group 
of failures in cluster with 

same cause 

Total 
 failures (232) 

9 100 70 (30%) 

5 88, 85, 85, 85, 83 64 (28%) 

4 75, 67, 67, 57 49 (21%) 

2 50, 50 20 (9%) 

1 17 23 (10%) 

Figure 4.  HMDS display for the javac  data set.  Convex 
hulls indicate the results of manual classification. 

Table 3. Results of manual examination of 
automatic clustering for Jikes data set. 

Number of 
clusters 

% size of largest group 
of failures in cluster with 

same cause 

Total 
failures 
(225) 

12 100 64 (29%) 

5 75, 75, 80, 83, 85 41 (18%) 

4 56, 67, 67, 70 25 (11%) 

8 25, 33, 33, 41, 43, 50, 
50, 50 

76 (34%) 

Figure 5.  HMDS display for the jikes  data set.  Convex 
hulls indicate the results of manual classification. 



 

 

8.3 Summary 

Automatic clustering assigned most of the failures for 
each subject programs to clusters in which the majority of 
failures appear to have the same cause.  However, 
automatic clustering created a few large, non-
homogeneous clusters with sub-clusters consisting of 
failures with the same cause.  The sub-clusters were 
evident in the corresponding HMDS displays.  In other 
cases automatic clustering erroneously split groups of 
failures with the same cause, but the HMDS displays did 
not provide clear evidence that these groups were 
homogeneous.  Overall, groups of failures with the same 
cause tended to form fairly cohesive clusters in the HMDS 
displays.  Small, tight clusters in the displays were quite 
likely to contain failures with the same cause, although 
they were not always maximal. 

8.4 Threats to Validity 

Clearly, it is not possible to conclude from the 
experiments described here that our classification strategy 
will be generally effective.  Although the subject 
programs are substantial in size and are widely used, all of 
them are compilers.  Also, hand crafted test inputs were 
used rather than operational inputs.  Test inputs like those 
in the GCC and Jacks test suites are generally smaller than 
typical compiler inputs and so the corresponding profiles 
may be less “noisy” than profiles of operational inputs 
would be.8  Additional evaluation of the classification 
strategy is necessary, especially with different kinds of 
software and with actual failure reports from users. 

9. RELATED WORK 

Several previous papers have addressed issues closely 
related to failure classification and prioritization.  
Agrawal, et al describe the χSlice tool, which analyzes 
system tests to facilitate location of defects [1].  χSlice 
visually highlights differences between the execution slice 
of a test that induces a failure and the slice of a test that 
does not.  Reps, et al investigate the use of a type of 
execution profile called a path spectrum for discovering 
Year 2000 problems and other kinds of defects [22].  
Their approach involves varying one element of a 
program’s input between executions and analyzing the 
resulting spectral differences to identify paths along which 
control diverges.  Hildebrandt and Zeller describe a delta 
debugging algorithm that generalizes and simplifies 
failure-inducing input to produce a minimal test case that 

                                                           
8 On the other hand, operational inputs may tend to form 

more cohesive groups, which would aid our strategy. 

causes a failure [10].  Their algorithm, which can be 
viewed as a feature-selection algorithm, is applicable to 
failure classification in the case that failure-causing inputs 
reported by different users simplify to the same minimal 
failure-causing input.  Note that Hildebrandt and Zeller’s 
approach requires an automated means of detecting 
whether a simplified input causes the same kind of failure 
as the original input. 

Podgurski, et al used cluster analysis of profiles and 
stratified random sampling to improve the accuracy of 
software reliability estimates [21].  Leon, et al describe 
several applications of multivariate visualization in 
observation-based (software) testing, including analyzing 
synthetic test suites, filtering operational tests and 
regression tests, comparing test suites, and assessing bug 
reports [18].  Dickinson, et al present a technique called 
cluster filtering for filtering test cases [4][5].  This 
technique involves clustering profiles of test executions 
and sampling from the resulting clusters.  They present 
experimental evidence that cluster filtering is effective for 
finding failures when unusual executions are favored for 
selection.  Note that the aforementioned work on 
observation-based testing differs from the work reported 
here in three main respects: 
� The goal of the previous work was to identify 

possible failures in set of mostly successful executions.  
The goal of the current work is to group together those 
failures among a set of reported failures that have 
closely related causes. 

� The previous work did not involve user feedback; the 
current work depends upon failure reports from users. 

� The previous work applied unsupervised pattern 
classification techniques to complete program profiles.  
The current work uses supervised pattern classification 
techniques to select relevant profile features prior to 
clustering or visualization. 

10. CONCLUSIONS 

The results of applying our classification strategy to 
GCC, Jikes, and javac suggest that the strategy is 
workable and can be effective.  It is especially notable that 
the strategy performed well with a relatively simple type 
of classifier and with coarse-grained execution profiles; it 
may perform even better with more powerful classifiers 
and more detailed profiles.  However, before firm 
conclusions can be drawn about the effectiveness of the 
classification strategy, it is necessary to evaluate it using a 
number of additional subject programs of different types.  
It is especially important to evaluate it with deployed 
software and with failure reports from users.  Other basic 
issues to be resolved in future work include the best 
choices of methods for profiling, classification, clustering, 



 

 

and visualization and the best way to integrate these 
methods during failure classification. 
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